ExPex

for linguists

Example formatting, glosses, and reference

(1) a. Mary; ist sicher, [dass es den Hans nicht storen wiirde |seiner Freundin
Mary is sure that it the-ACC Hans not annoy would his-DAT girlfriend-DAT
ihr; Herz auszuschiitten]].

her-ACC heart-ACC out to throw
‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.’

b. Mary; ist sicher, [dass seiner Freunden ihr; Herz auszuchiitten
Mary is sure that his-DAT girlfriend-DAT her-ACC heart-ACC out to throw

[dem Hans nicht schaden wiirde]].
the-DAT Hans not damage would

‘Mary is sure that to reveal her heart to his girlfriend would not damage John.’

User’s Guide

John Frampton
Jj.frampton @neu.edu

January 2014
Version 5.0

Contents

Introduction oL L L. Lo oL
I.1 Changes
1.2 LaTex/Tex cooperation v v v v . ..
1.3 Acknowledgements
Some preliminary exampleso Lo oL
XKV parameterization L L. .o e

10

11

12

Examples without parts

4.1 Explicit example numbers; Formatting the example number

Examples with labeled parts: Basics
5.1 nopreamble

5.2 Stipulated labels
More on examples, with and without labeled parts
6.1 Anchoring

6.2 Formatting the labels

6.3 Aligning the labels

6.4 Relative versus fixed dimensions . . .

6.5 User designed labeling

6.6 The parameter sampleexno

6.7 1JAL style format of multiline examples

6.8 Footnotes and endnotes
User defined styles
Judgmentmarks oL,
Glosseso
9.1 Parameters

9.2 Exceptional \glaitems
Nlevel glosses; an alternate coding syntax . . .
10.1 Parameters which modify particular lines
10.2 \nogloss and the diacritics @ and + .
10.3 Line spacing inside glwords
More about glosses
11.1 The parameter glwidth
11.2 Comments and citations
11.3 Line spacing in wrapped glosses . . .
Glosses; Special topics
12.1 User defined levels

12.2 Positioning the free translation to the right of the interlinear gloss

12.3
12.4
12.5
12.6

Glosses withaside panel
Cascading hanging indentation in glosses
Gloss underfixeso 0oL

Center alignment in glwords

13 Referring to examples and labeled parts of examples

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

Unnamed reference
Named reference
Proofing references
The tag/reference file
References to references, references as values
Extensions of the tag/reference mechanism
The parameter fullreformat
Reference to a part of a multipart example
Support for the LaTex \1abel and \ref commands

14 Tablesinexamples L Lo oL

14.1
14.2
14.3
14.4
14.5

Tables with labeled lines
Tagging implicit labels in tables
Some useful table making tools
Tables that can break between pages
Squeezing tables into tight places

15 ExPex and PSTrickso
16 Control over page breaking inside examples

16.1
16.2

Discouraging page breaks in examples
Controlling where page breaks occur in examples (if they must)

Index of control sequences, parameters, and special symbols

1. Introduction

Many of the needs of linguists who wish to produce typographically attractive papers using Tex or
LaTex are not specific to linguistic papers. There are therefore many macro packages which deal
with tables of contents, references, section headings, font selection, indexing, etc. But linguistics
does have some special typographic needs. I addressed two of these with the macro packages
PST-JTree and PST-ASR, which typeset syntactic trees and autosegmental representations. ExPex
addresses the main remaining special Tex need in linguistics: formatting examples, examples with
multiple parts, glosses, and the like, and referring to examples and parts of examples. The name
comes from the two central macros, \ex and \pex, used to typeset examples and examples with
labeled parts.

PST-JTree and PST-ASR rely heavily on Hendri Adriaens’ XKeyVal package, which has
become the standard for PSTricks based macro packages. Although ExPex is not based on
PSTricks, it does handle parameterization the same way that PST-JTree and PST-ASR do. When
expex.tex is loaded, it immediately checks to see whether xkeyval.tex has already been loaded. If
not, it does so.

The goal in writing a macro package for general use is to make it simple to use if only simple
things need to be done, but powerful enough so that users who have complex needs can get those
needs satisfied if they are willing to deal with the complexities that complex needs inevitably
involve. If you think there are simple things that are not simple to do, or complex things that
cannot be done, please write to me at j.frampton @neu.edu. The ExPex macros have evolved over
the last 15 or so years and like anything which evolves, various features of the current state may
have more to do with history than with optimal design. Please let me know about departures from
optimal design. Perhaps the next version can be improved.

This User’s Guide begins with four examples which demonstrate ExPex in action. It serves
as a “A Quick Guide to Expex”. Each page gives some code at the top, with the product of this
code below. Its main purpose is to give a sense of how ExPex works, so that curious readers have
some basis for determining whether they want to proceed with the details. It is possible to begin
to use ExPex solely on the basis of the four demo pages and learn the more subtle capabilities as
needed. A quick survey of the index and the table of contents should give you some idea of what
is available, if you need it.

1.1. Changes

The most recent previous version of ExPex is version 4.1d. That version will still be available on
CTAN, zipped as expex41d.zip. Aside from bug fixes, the changes in this version are:

1. The gloss parameter abovemoreglskip has been deprecated (declared obsolete and slated to
be eliminated) for some time. It has now been removed from ExPex. The function it served
is now served in a more general way by extraglskip.

2. An entirely new way of coding glosses, called the nlevel style has been introduced. See
Section 10 for the many details. This style makes it much easier to keep track of words and
their associated glosses, particularly when long glosses need to be typeset.

3. A new way is introduced for including unglossed items (brackets, for instance) among the
items which are glossed. The exceptional gloss items ‘[* and ‘]’ are now deprecated as
exceptional gloss items. Consequentially, the parameters everybrack, glbrackwordsep,
and glbrackbracksep have also been deprecated. All these deprecated items will be
removed from ExPex at some time in the future.

1

4. Control over vertical spacing in glosses has been streamlined. Two little used parameters
autoglskip (which was rarely used outside the default setting) and gllineskip have been
eliminated. Their functions have been taken over by extraglskip and strut insertion. It
is possible that this may create some problems with backwards compatibility. If there are
problems, either use Version 4.1d or contact me directly to see if there is an easy solution to
the problem.

5. Glosses now break over pages, provided they are full width.

6. Center alignment is now an option for glosses. Glosses of words can be centered under the
word they gloss.

7. ExPex example numbering is now compatible with the LaTex \includeonly mechanism.

1.2. LaTex/Tex cooperation

ExPex is designed to be used by either Plain Tex or LaTex users. LaTex users need to say
\usepackage{expex} and Tex users \input expex. All of the code for the examples in this
documentation should run equally well in either system, subject to the notes below.

1.2.1 Note to LaTex users

\1it (now a deprecated LaTex command) is used in a few places. In case ExPex detects that LaTex
is being used, it executes \let\it=\1itshape.

1.2.2 Note to Tex users

Three macros are used in the examples in this documentation which are defined in LaTex but not
in Plain Tex: \footnotesize, \sc, and \textsc. Assuming, for example, that text is set in 10pt
computer modern, the following would suffice for all the examples in this documentation.

\font\eightrm=cmr8

\font\eightit=cmti8

\def\footnotesize{\eightrm \let\it=\eightit \baselineskip=9pt}
\font\tensc=cmcscl®

\let\sc=\tensc

\def\textsc#1{{\sc #1}}

Most Plain Tex users will have other fonts and much more general size changing macros
at their disposal. The code above is barely sufficient to handle the examples in this is docu-
mentation, but it will do the job. For what it is worth, this documentation was typeset using
Plain Tex. \twelvepoint and \tenpoint were defined modeled on pages 414—415 in the
TeXbook and \let\footnotesize=\tenpoint was executed to define \footnotesize. The
running text is 12pt. \sc was defined by \font\twelvesc=cmcsc10 scaled\magstepl' and
\let\sc=\twelvesc?.

1. cmcesc10 scaled was used rather than cmcsc12 because Postscript fonts for cmesc10 are more readily available than
those for cmcsc12.

2. Small caps are used only in text size

1.3. Acknowledgements

Many participants in the Ling-Tex discussion group have contributed to the development of ExPex,
either by posing good questions, solving problems, or providing informed discussion of desirable
features. In particular, I thank Stephen Anderson, Mario Bisiada, Noah Constant, James Crippen,
Alexis Dimitriadis, Claude Dionne, Kevin Donnely, Antonio Fortin, Jeremy Hammond, Daniel
Harbor, Joshua Jensen, Don Killian, Joost Kremers, John Lyon, Alan Munn, Christos Vlachos,

and Natalie Weber.

2. Some preliminary examples

1. Examples and examples with parts

Example (\nextx) is well-known from the literature on parasitic
gaps. Here we are concerned with example formatting, not with the
interesting syntax.

\ex

I wonder which article John filed {\sl t\/} without reading {\sl e}.
\xe

It is beyond the scope of this investigation to determine exactly why
John did not read the article.

Multipart examples are equally straightforward.

\pex Two examples of parasitic gaps.

\a He is the man that John did not interview {\sl e\/} before

he gave the job to {\sl e}.

\a He is someone who John expected {\sl e\/} to be successful
though believing {\sl e\/} to be incompetent.

\xe

Here, we can speculate on why John did not do an interview before
recommending the person for a job. It is likely that the person
was a crony of John. In (\lastx b), perhaps John knew that

the ‘‘someone’’ went to prep school with the owner of the
business.

Example (2) is well-known from the literature on parasitic gaps. Here we are concerned with

example formatting, not with the interesting syntax.

(2) Iwonder which article John filed t without reading e.

It is beyond the scope of this investigation to determine exactly why John did not read the article.

Multipart examples are equally straightforward.

(3) Two examples of parasitic gaps.

a. He is the man that John did not interview e before he gave the job to e.

b. He is someone who John expected e to be successful though believing e to be incompetent.

Here, we can speculate on why John did not do an interview before recommending the person
for a job. It is likely that the person was a crony of John. In (3b), perhaps John knew that the

“someone” went to prep school with the owner of the business.

2. Named reference

If examples and parts of examples are tagged, they can be
referred to by name.

\pex<pg>

\a This is the man that John interviewed {\sl e\/} before

telling you that you should give the job to"{\sl e}.

\a<A> This is someone who John expected {\sl e\/} to be successful
though believing {\sl e\/} to be incompetent.

\xe

Now, names can be used. The name/reference pairs can be written
to a file, making forward reference possible and backwards
reference at a distance reliable. You can refer to part
\getref{pg.A} of example (\getref{pg}), or (\getfullref{pg.A}).

If you use a tag that has not been defined, {\sl ExPex\/} will
let you know. If you try to reference a name which has no
reference, \getref{pg.B} for example, a warning will be issued
and the (bracketed) tag printed as shown at the beginning of this
sentence. If you try to tag a part of an example which has no
tag, {\sl ExPex\/} will let you know about that as well.

If examples and parts of examples are tagged, they can be referred to by name.

(4) a. This is the man that John interviewed e before telling you that you should give the job
to e.

b. This is someone who John expected e to be successful though believing e to be
incompetent.

Now, names can be used. The name/reference pairs can be written to a file, making forward
reference possible and backwards reference at a distance reliable. You can refer to part b of
example (4), or (4b).

If you use a tag that has not been defined, ExPex will let you know. If you try to reference a
name which has no reference, [pg.B] for example, a warning will be issued and the (bracketed)
tag printed as shown at the beginning of this sentence. If you try to tag a part of an example which
has no tag, ExPex will let you know about that as well.

3. Glosses

\ex
\begingl

\gla Mary$_i$ ist sicher, dass es den Hans nicht st\"oren

w\"urde seiner Freundin ihr$_i$ Herz auszusch\"utten.//

\glb Mary is sure that it the-{\sc acc} Hans not annoy would

his-{\sc dat} girlfriend-{\sc dat} her-{\sc acc} heart-{\sc acc} {out to

throw}//

\glft ‘Mary is sure that it would not annoy John to reveal her

heart to his girlfriend.’//
\endgl
\xe

(5) Mary; ist sicher, dass es den Hans nicht storen wiirde seiner Freundin ihr;

Mary is sure that it the-acc Hans not

Herz auszuschiitten.
heart-acc out to throw

annoy would his-par girlfriend-pat her-acc

‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.’

Glossing can be done in two different coding styles. Either of the following produce the gloss

display below.

\ex

\begingl

\gla k- wapm -a -s’i -m -wapunin -uk//

\glb Cl1 V Agr Neg Agr Tns Agr//

\glc 2 see {\sc 3acc} {} {\sc 2pl}
preterit {\sc 3pl}//

\glft ‘you (pl) didn’t see them’//

\endgl

\xe

\ex

\begingl[glstyle=nlevel]

k-[Cl/2]

wapm[V/see]

-a[Agr/\sc 3acc]

-s’i[Neg]

-m[Agr/\sc 2pl]

-wapunin[Tns/preterit]

-uk[Agr/\sc 3pl]

\glft ‘you (pl) didn’t
see them’

\endgl

\xe

(6) k- wapm -a -s’i -m -wapunin -uk
Clv Agr Neg Agr Tns Agr
2 see 3Acc 2pL preterit 3pL

‘you (pl) didn’t see them’

4. Parameters

\pex[interpartskip=3ex]

\a

\begingl

\gla pwa- min -kwa -pun//

\glb Neg V Agr Tns //

\glc {} give 2pl{\sc nom}.3pl{\sc acc} preterit //

\glft ‘you (pl) didn’t give them (something)’//

\endgl

\a

\begingl [everygl=\openup.5ex, everygla=,everyglb=,
everyglft=\it,aboveglftskip=1.5ex]

\gla pwa- min -kwa -pun//

\glb Neg V Agr Tns //

\glc {} give 2pl{\sc nom}.3pl{\sc acc} preterit //

\glft ‘you (pl) didn’t give them (something)’//

\endgl

\a

\begingl[everygl=,everygla=\bf,everyglb=\it,
everyglft=,aboveglftskip=0pt]

\gla pwa- min -kwa -pun //

\glb Neg V Agr Tns //

\glc {} give 2pl{\sc nom}.3pl{\sc acc} preterit //

\glft ‘you (pl) didn’t give them (something)’//

\endgl

\xe

(7) a. pwa- min -kwa -pun
Neg V Agr Tns

give 2plNom.3placc preterit

‘you (pl) didn’t give them (something)’

b. pwa- min -kwa -pun
Neg V Agr Tns
give 2plNom.3placc preterit

‘you (pl) didn’t give them (something)’

c. pwa- min -kwa -pun
Neg V Agr Tns
give 2plNom.3placc preterit

‘you (pl) didn’t give them (something)’

3. XKV parameterization

Macro: \lingset

(Here and in following sections and subsections, an inventory of the macros, parameters, and
count registers which are described in what follows appears at the beginning of the section. “What
follows” refers to the text up to the next section or subsection heading.)

The key-value approach to parameter setting in Tex, which originated with David Carlisle’s
keyval package, is illustrated by the key textoffset. ExPex makes the distance from the
example number to the text equal to value associated with this key. Executing the command

\lingset{textoffset=1.3em}

results in the definition (or redefinition) of the macro \lingtextoffset so that it expands to
the value 1.3em. The macro \ex, which is used to typeset examples without labeled parts,
uses \lingtextoffset. But ExPex users never have to concern themselves with the macro
\lingtextoffset. If they are not satisfied with the default spacing, they simply have to know
that textoffset is the key for setting the distance from example number to the text.

The argument of \1ingset can be a comma separated sequence of key/value pairs. The
syntax is:

\lingset{ key,=value,, ..., key,=value, }

The comma separated key/value pairs are processed sequentially, from left to right. If a value
contains a comma, it must be hidden from the mechanism which parses the list by putting the
value in braces. The braces are removed by the parser.

Many ExPex macros take an optional argument, delimited by brackets, which is passed to
\lingset. \ex, for example, takes an optional argument. You might say, for example,

\ex[textoffset=1.4em,aboveexskip=0pt]

The argument of \ex will be passed to \1ingset and the result evaluated, so that the example
will be typeset with these parameter settings. This is carried out inside a group, so the global
settings of the parameters are not affected. As we will see later, aboveexskip=0pt will cause
the example to be typeset with no vertical skip above it. This is sometimes useful in avoiding
exaggerated spacing when an example directly follows another one, with no intervening text.

ExPex has various kinds of keys. The distinctions depend on the effect of executing (8) and
the restrictions on the possible values which can appear.

(8) \lingset{ key=value}

Command key: After (8) is executed, the macro \1ingkey or \1ing@key expands to value. It will
be made clear when the key is introduced whether it is \1ingkey or \1ing@key that is defined.?

Incremental dimension parameter: value must be a dimension or a dimension prefixed by !.
If value is a dimension, it is stored in \lingkey. If it is a !-prefixed dimension, the prefixed
dimension is added to its former dimension and the result stored in \1ingkey. There must be

3. If there was a significant chance that some users might want easy access to the macro value, \1ing key, with no @
in the macro name, was used.

a dimension to increment, so a fatal error results if \1ingkey does not expand to a dimension.
Incremental parameters are very useful if a minor adjustment to the format in a particular example
is desired. There are incremental skip parameters as well, which operate in an entirely parallel
manner.

In the case of command and incremental keys, the notation Val(key) is used to indicate
the value of the key. So, for example, Val(textoffset) is the value associated with the key
textoffset.

Pseudo parameter: (8) is executed for its side effects. A value is not stored. The key samplelabel
illustrates this. When \1ingset{samplelabel=A. } is executed, no ExPex macro which expands
to value is defined. Instead, the parameter labelwidth is set to the width of “A.” in the current
font.

Choice parameter: Choice parameters are a kind of pseudo parameter. The value which is
assigned must be drawn from a prescribed list. ExPex choice parameters do not store value when
(8) is executed; the purpose of executing (8) is the side effects which are coded into the definition
of the key.

The parameter 1abelalign illustrates this. \lingset{labelalign=value} is valid only
if value is one of left, center, or right. A fatal error results otherwise. The effect is to
appropriately define the macro \@labelprint which is used to typeset the labels of subparts in
multipart examples.

When XKV keys are defined, they can be given default values, as part of their definitions. If a
key foo, for example, is given the default value 2pt, then executing \1ingset{foo} is equivalent
to executing \1lingset{foo=2pt}. Only a few ExPex keys have default values in the XKV sense,
but most are set to an initial value in expex.tex. This initial value will sometimes be called the
default setting of the key, even though the key does not have a default setting in the XKV sense.

4. Examples without parts

Sections will usually begin with an inventory of the parameters and user friendly macros and
registers that are introduced in the section, The initial settings of parameters will be given if they
are relevant. Pseudo parameters are set for their immediate effect, not to store a setting associated
with the parameter, so the initial setting of pseudo parameters is not relevant. \ex™[] above
should be taken to mean that the macro \ex will be described, that it is optionally modified by a
following diacritical tilde ™ (as described below), and that it optionally takes an argument. The
text will describe what arguments are permitted. A T superscript on a parameter key in these
inventories indicates a parameter whose value is accessible by the macro \1ingkey. A (!) prefix
on “dimension” or “skip” indicates that the parameter is incrementable, by a dimension or a skip
as the case may be.

Macros: \ex"[], \xe
Counter: \excnt

Parameters:
key value initial value
numoffsett (") dimension Opt
textoffset? (") dimension lem
aboveexskipt (Mskip 2.7ex plus .4ex minus .4ex
belowexskipt (Dskip 2.7ex plus .4 ex minus .4 ex
exskip skip (pseudo-parameter)

\ex constructions are terminated by \xe. The following sample paragraph illustrates the use of
\ex ...\xe. The convention in this manual is that text, as it would appear in a document, is
displayed in a framed box, usually with the code immediately following or preceding. The code
assumes that the initial parameter settings are in effect at the point that the code is executed.

The following example is well-known from the literature on parasitic gaps. Here we are concerned
with example formatting, not with the interesting syntax.

(9) I wonder which article John filed t without reading e.

Various aspects of the format are controlled by parameters, which can be set either globally or via
an optional argument.

The following example is well-known from the literature on
parasitic gaps. Here we are concerned with example formatting,
not with the interesting syntax.

\ex

I wonder which article John filed {\sl t\/} without reading {\sl e}.
\xe

10

\noindent Various aspects of the format are controlled by
parameters, which can be set either globally or via an optional
argument.

Those users who try to save virtual paper can equally use:

The following example is well-known from the literature on
parasitic gaps. Here we are concerned with example formatting,
not with the interesting syntax.\ex I wonder which article John
filed {\sl t\/} without reading {\sl e}.\xe Various aspects of
the format are controlled by parameters, which can be set either
globally or via an optional argument.

With different parameter settings, we get:

The following example is well-known from the literature on parasitic gaps. Here we are concerned
with example formatting, not with the interesting syntax.

(11) I wonder which article John filed t without reading e.

Various aspects of the format are controlled by parameters, which can be set either globally or via
an optional argument.

The following example is well-known from the literature on
parasitic gaps. Here we are concerned with example formatting,
not with the interesting syntax.

\ex[numoffset=2em, textoffset=.5em,aboveexskip=1ex,belowexskip=1ex]
I wonder which article John filed {\sl t\/} without reading {\sl e}.
\xe

\noindent Various aspects of the format are controlled by
parameters, which can be set either globally or via an optional
argument.

The horizontal dimensions are illustrated below. numoffset is measured from the left
margin.

numoffset textoffset
[| [|

L (23) This is the example text.

Example numbering is automatic. The count is kept in \excnt. It is incremented when \ex is
expanded, before the number is typeset. \excnt will therefore always give the count of the next
example. Note that this means that inside \ex...\xe, \excnt does not give the count of the
current example. Vertical skip is inserted before and after examples, of amounts determined by
Val(aboveexskip) and Val(belowexskip).

11

Inside \ex constructions, the example text is wrapped as ordinary text, with \leftskip
set by \ex. Since \ex sets \leftskip and relies on this setting, changes in \1leftskip inside
\ex ...\xe must be made with care, but can be made after the first paragraph (i.e. after the first
explicit or implicit \par).

(13) Und hier konnen wir sehen was fiir Unfug wird gemacht wenn er einen ganz langen Satz
binnen kriegt.

(14) @ governs Bif a = X° (in the sense of X-bar theory), @ c-commands S, and 3 is not protected
by a maximal projection.

The code which was used to typeset the pair of examples above has two useful features which
are worth highlighting.

\ex

Und hier k\"onnen wir sehen was f\"ur Unfug wird gemacht
wenn er einen ganz langen Satz binnen kriegt.\par\nobreak
\xe

\ex[aboveexskip=0pt]

α {\it governs\/} β if $\alpha=X"0$ (in the

sense of X-bar theory), α c-commands β, and β
is not protected by a maximal projection.

\xe

\par\nobreak is used to illustrate how a page break between two consecutive examples can be
suppressed. This is sometimes desirable. \par puts Tex in the mode of adding lines to the page,
and \nobreak tells Tex to avoid a break (which is a page break when Tex is in the mode of adding
lines), essentially until after more text is added to the page. aboveexskip=0pt is used in the
second example to avoid double spacing between the examples. Otherwise vertical skip would be
added both below the first example and above the second example.

Since the need to suppress vertical skip above examples arises with some frequency, a
shortcut is made available to accomplish this. Simply say \ex~. Tilde modification of \ex can be
used with parameters; \ex" [...] will be interpreted correctly.

exskip is a pseudo parameter which can be used to simultaneously set both aboveexskip
and belowexskip. The effect of \1ingset{exskip=value} is

\lingset{aboveexskip=value,belowexskip=value}

12

4.1. Explicit example numbers; Formatting the example number

Parameters:
key value initial value
exno token list (pseudo parameter)
exnoformat token list of the form ... X ... 09
exnotype arabic, chapter.arabic, or roman arabic

4.1.1 exno and exnoformat

Suppose that you want to repeat an example that was given earlier in your document. Something
like.

(15) This is a crucial example.
It is clear that this example is related to the earlier example (5), which is repeated below.
(5) This is an example that was given many pages earlier.

If we are on the right track, as the saying goes, we expect the next example to be grammatical. But
it is not.

(16) *...

\ex This is a crucial example.\xe

It is clear that this example is related to the earlier
example (14), which is repeated below.

\ex[exno=14]

This is an example that was given many pages earlier.\xe

If we are on the right track, as the saying goes,

we expect the next example to be grammatical. But it is not.
\ex * \dots\xe

excnt is not incremented if the example number is supplied by exno.
exno does not have to be set to an integer, as shown below.

\ex[exno=Δ] Earlier example.\xe

(A) Earlier example.

Sometimes, it is desirable to have an alternative to the standard formatting of example
numbers with parentheses.

13

\ex[exno={[14, repeated]},exnoformat=X] Earlier example.\xe

[14, repeated] Earlier example.

Note the use of braces to hide the comma in the setting of exno. Otherwise, the key-value parser
would get confused, interpreting [14 as the setting of exno and reporting that repeated is an
undefined key. The initial setting of exnoformat is (X), so this parameter must be reset to
prevent putting parentheses around the special exno. The label formatting mechanism is primitive.
labelformat must be of the form

(balanced text) X (balanced text)

The pre-X text is inserted before the label (including the material specified by everypar) and the
post-X text is inserted after the label. The balanced text cannot contain the character X. Balanced
text 1s a string of tokens with properly nested (explicit) braces. No error checking is done to ensure
that the format specification has the required form, so be careful. An error might lead to very
obscure error messages.

Note that

\ex[exno={14, repeated},exnoformat={[X]}] Earlier example.\xe

and

\ex[exno={[14, repeated]},exnoformat=X] Earlier example.\xe

give the same result. Note also that the brackets in key values are hidden inside braces.
Section (13.2) will show how to name example numbers, so that exno can be set by giving
the name of an example number.

4.1.2 exnotype

In articles it is usual to number examples using consecutive arabic numerals. Setting exnotype
to arabic accomplishes this. Footnotes generally use consecutive roman numerals (i), (i), etc.,
requiring exnotype to be set to roman. See Section 6.8 for numbering in footnotes.

Some books number examples using consecutive arabic numerals, restarted at 1 in each
chapter, with the chapter number as a prefix. So (5.6), for example, would be the (6) example in
chapter 5. Setting exnotype to chapter.arabic accomplishes this, provided that the \chapter
macro which is employed cooperates and that the macro \thechapter produces the chapter
number. Minor surgery on the \chapter macro in LaTex classes which provide chapters is
necessary. It must be modified so that \excnt is reset to 1 at the start of each chapter. The file
epltxchapno.sty which is provided in this distribution provides a modification which works with
book.cls, scrbook.cls, report.cls, and memoir.cls.

14

5. Examples with labeled parts: Basics

Counter: \pexcnt
Macros: \pex [], \a[]

Parameters:

key value initial value
labeltype name of a key-value list alpha
labeloffsetT (!)dimension lem
labelwidtht (")dimension 72em
preambleoffsett (!)dimension lem
interpartskipf (Dskip lex plus .2ex minus .2 ex
belowgpreambleskipt (Dskip lex plus .2ex minus .2 ex
samplelabel token list (pseudo-parameter)

Typical examples are given below, with the initial parameter settings.

(17) a. This is the first example.

b. This is the second example.

(18) Multipart examples often have a title or preamble of some kind.
a. This is the first example.

b. This is the second example.

\pex

\a This is the first example.
\a This is the second example.
\xe

\pex~ Multipart examples often have a title or preamble of some kind.
\a This is the first example.

\a This is the second example.

\xe

Just like \ex, \pex must be closed by \xe, can be modified by a tilde diacritic to suppress adding
vertical space above the example, and accepts parameters. The macro \a, which introduces each
labeled part, is defined only within \pex ...\xe. It accepts certain parameters. Extra vertical
skip (set by interpartskip) is inserted between the parts; and extra vertical skip (determined
by belowpreambleskip) is inserted between the preamble and the first part. The preamble is the
visible material, if any, that appears after the example number and before the first part.

The horizontal dimensions are parameterized as pictured below, provided that the anchoring
parameters have their initial values. The parameters numoffset and textoffset are used in

15

both \ex and \pex constructions. The effects of changing the settings of the anchoring parameters
(labelanchor and textanchor) will be considered in Section 6.1.

numoffset ‘ labeloffset 'textoffset‘
(24): a.: This is an example.
-
labelwidth

Adjustment for the width of the example number is automatic, but the width of the label slot is
a parameter setting, not adjusted to the width of the particular label which appears in the label
slot. The initial setting of labelwidth is the width of “a.” at the point that the default setting is
established. This does not automatically change if the font is changed, in a footnote for example.
It can be set by the user explicitly by setting 1labelwidth to the desired dimension, or as an
incremental change to its previous value (1abelwidth=!3pt, for example, increases the width of
the label slot by 3pt). It can also be set indirectly by giving a sample label. 1abelwidth is then
set to the current width of that sample. ExPex sets the default label width by samplelabel=a..
ExPex comes with three label types predefined: alpha, caps, numeric, and roman.

\pex[labeltype=alpha]
\a First part.
\a Second part. b. Second part.

(19) a. First part.

\xe

\pex[labeltype=caps] ‘
\a First part. (20) A. First part.

\a Second part. B. Second part.

\xe

\pex[labeltype=numeric] .
\a First part. (21) 1. First part.

\a Second part. 2. Second part.

\xe

\pex[labeltype=roman] .)
\a First part. (22) (1) First part.

\a Second part. (i) Second part.

\xe

This kind of labeling is common in footnotes.
Section 6 will detail all the parameters relevant to the label types and how additional label
types can be defined by the user.

16

5.1. nopreamble

Parameter:
key value initial value default value
nopreamble boolean (not relevant) true

In order to properly format examples with parts, there are various reasons that \pex must be
able to figure out whether or not there is a preamble. One reason is fairly obvious. If there is a
preamble, every part introduced by \a must start on a new line, otherwise only parts after the first
part start a new line. \pex tries to figure it out without help. If \a directly follows \pex(™)([...])
and perhaps a following space, \pex knows there is no preamble and acts accordingly. There are
a few other following tokens, considered later in this manual, that \pex also knows are not signals
that there is a preamble. But \pex’s preamble detection abilities are primitive. The following, for
example, will confuse \pex.

\pex \it

\a first (23)

\a second a. first
\xe b. second

The \it command is interpreted as a preamble.
\pex needs some guidance in this case. It is provided by the parameter nopreamble.

\pex[nopreamble=true] \it

\a first (24) a. first
\a second b. second
\xe

In fact, it is a little simpler than this. XKV parametrization allows one to stipulate a default
value for each key that is defined. If the key is given to the parameter setting machinery with no
value, then the key is set to the default value. nopreamble has the default value true. So the
following is sufficient.

\pex [nopreamble] \it

\a first (25) a. first
\a second b. second
\xe

The global setting of nopreamble is irrelevant to \pex, which always assumes there is a
preamble unless it sees an immediately following \a or \pex or is told directly that there is no
preamble. In the following, for example, the setting of nopreamble outside \pex has no effect.

\lingset{nopreamble=true} 26

\pex \it (26)

\a first a. first
\a second b. second
\xe

17

5.2. Stipulated labels

Parameter:

key value initial value
label token list {3}

label is recognized as a key only by the \a macro. If 1abel=value is passed to \a, that value is
inserted as the label, ignoring automatic label generation.

\pex[exno=47]

\a[label=b] 47) b.
\a[label=d] d.
\a[label=g] g.
\xe

Besides 1abel, the only other key that \a recognizes is tag. See Section 13.2.

6. More on examples, with and without labeled parts

In this section, we take up complications and fine points. Users should ignore it until they face a
problem that the earlier sections do not deal with.

6.1. Anchoring

Parameters:
key value initial value
labelanchor numright, numleft, or margin numright
preambleanchor numright, labelleft, or text numright
textanchor numleft or normal normal

Initially, the left edge of the label slot is determined by its offset from the right edge of the number,
the left edge of the preamble is also determined by its offset from the left edge of the number, and
the left edge of the text is determined by its offset from the right edge of the label slot. But the
“anchor” for an offset is parametrized. In the example below, it is useful to anchor the labeloffset
at the left edge of the example number.

\pex[exno={[47, partially repeated from
p. 32]1},labelanchor=numleft,
exnoformat=X,labeloffset=1.5em] b. first

\par d. second

\a[label=b] first)

\a[label=d] second g. third

[47, partially repeated from p. 32]

\a[label=g] third
\xe

18

Braces are needed in the specification of the value of exno, otherwise \pex would think that the

key exno was set to the value [47 and try to set the key partially repeated from p. 32to

its default value. exnoformat is set to X so that parentheses are not put around the special exno.
The following would work equally well:

\pex[exno={47, partially repeated from
p. 32},labelanchor=numleft,exnoformat={[X]},
labeloffset=1.5em]

Braces are needed around [X] so that the mechanism that reads the optional argument of \pex
does not interpret the right bracket as the right delimiter of the optional argument.

The normal setting of textanchor anchors the text at the right edge of the number for \ex
constructions and the right edge of the label slot for \pex constructions.

Here is another example:

\lingset{textanchor=numleft, 9 f
labelanchor=numleft, @) a st
labeloffset=.35in, b. second
textoffset=.7in} (10) a. first

\pex[exno=9]
\a first aa. second

\a second

\xe

\bigskip
\pex[exno=10]

\a first
\a[label=aa] second
\xe

Some publications demand this style, in which both the label and text offsets are measured from
the left edge of the number, or from the margin. It is a relic of typewriter days with mechanical
tabs.

6.2. Formatting the labels

Parameters:
key value initial value
everylabel token list {}
labelformat ... A... A.

The token list everylabel is inserted just before labels are typeset. It is grouped so that it affects
only the label. The main use is to set the font used for the labels if it differs from the font in the
running text. For example:

19

\pex[everylabel=\it]

\a one (27) a. one
\a two b. two
\xe

There are other uses aside from setting the label font.

\pex[everylabel=A,labeltype=numeric,

samplelabel=A1.] (28) Al. Anexample

\a An example A2. Anexample
\a An example A3. An example
\a An example

\xe

The effect of the value of 1abel format is illustrated in (29).

\pex[labelformat=\langleA\rangle, 79 q
samplelabel=$\1langle$a\rangle] 29) <@ rst
\a first (b) second

\a second
\xe

The example above is fanciful, but one sometimes sees examples in the format below.

\pex[exnoformat=X.,labeltype=roman,

labelformat=(A),samplelabel=(iii)] 30. (1) first
\a first (i1)) second
\a second (iii) third
\a third .
\a fourth (iv) fourth
\xe

Like the example number formatting mechanism, the label formatting mechanism is primitive.
labelformat must be of the form

(balanced text) A (balanced text)

The pre-A text is inserted before the label (including the material specified by everylabel)
and the post-A text is inserted after the label. The balanced text cannot contain the character A.
Balanced text is a string of tokens with properly nested (explicit) braces. No error checking is
done to ensure that the format specification has the required form, so be careful. An error might
lead to very obscure error messages.

There is some redundancy. The following is an alternate way to get the effect in (27) using
labelformat instead of everylabel.

\pex[labelformat=\it A.]

\a one (31) a. one
\a two b. two
\xe

Another style sometimes found in footnotes is like the one in (30), except that the labels are
right aligned in the label slot.

20

6.3. Aligning the labels

Parameters:
key value initial value
labelalign left, right, ormargin left

There is a choice of left, right, or center alignment of the labels in the label slot. This is chosen by
the parameter 1abelalign, which can be set to 1eft, center, or right. For example,

\pex[exno=43,labeltype=roman,

labelformat=(A),labelalign=right, 43) () first

samplelabel=(iii)] (i1) second
\a first Gii) third
s: iﬁfgzd (iv) fourth
\a fourth
\xe

This style looks odd to me, but this is the style for multipart examples in the main text in
Chomsky’s Lectures on Government and Binding. In footnotes, the style is:

\pex[exno=i,labeltype=alpha, ‘
samplelabel=(a),labelformat=(A)] (i) (a) first

\a first (b) second

\a second © third

\a third

\a fourth (d) fourth

\xe

If you look carefully, the vertical column of parts labels in the last example looks somewhat
ragged because the width of “(b)” is slightly larger than the width of “(c)”. Center alignment of
the labels gives a neater appearance.

\pex[exno=i,labeltype=alpha, . 6
samplelabel=(a),labelformat=(A), (1) (a) first
labelalign=center] (b) second

\a first (c) third

a second
sa third (d) fourth
\a fourth

\xe

For more ordinary \pex constructions which use the letters or numbers which have roughly
the same width, label alignment is not a significant concern. But if labels include, for example, the
narrow letter “i” and the wide letter “m”, as below, label alignment has a noticeable effect on the
appearance. Individual tastes (and publisher’s demands) may differ, but I prefer center alignment
in these cases.

21

(32) left aligned labels

1.
i.
k.
L
m.
n.

A typical example.
A typical example.
A typical example.
A typical example.
A typical example.
A typical example.

(33) center aligned labels

1.
i.
k.

1
m.
n.

A typical example.
A typical example.
A typical example.
A typical example.
A typical example.
A typical example.

(34) right aligned labels

L.

5 B — &«

A typical example.
A typical example.
A typical example.
A typical example.
A typical example.
A typical example.

If the labels are numeric, label alignment can have an even bigger effect. Again, individual
tastes and publishers’ demands may differ. My preference is right alignment in this case.

(35) left aligned labels (36) center aligned labels (37) right aligned labels

7. A typical example. 7. A typical example. 7. A typical example.
8. A typical example. 8. A typical example. 8. A typical example.
9. A typical example. 9. A typical example. 9. A typical example.
10. A typical example. 10. A typical example. 10. A typical example.
11. A typical example. 11. A typical example. 11. A typical example.
12. A typical example. 12. A typical example. 12. A typical example.

The initial setting is left alignment for letters (either uppercase or lowercase) and right
alignment for numbers. Unless numbers or letters of significantly different widths appear as labels,
most users will not notice the difference and can safely ignore the issue.

It is a side issue, but the reader may have wondered how (32-34) and (35-37) were typeset.
The idea is simple. You say:

\line{\divide\hsize by 3

\vbox{\pex ... \xe}\hss
\vbox{\pex ... \xe}\hss
\vbox{\pex ... \xe}}

\hss is used to give a little stretch or shrink so that dimensional rounding does not lead to an
under or overfull \1ine{ ...}. It is important in examples like this that \pexcnt is incremented
globally, so that the latter vboxes see the \excnt which results from an operation inside a previous
vbox. We will see later that in some situations this behaviour is not desirable and how it can be
altered.

Variations are useful. One can easily imagine a situation in which something like the
following is appropriate for two side by side examples.

\line{%
\vbox{\hsize=.55\hsize \pex ... \xe}\hss
\vbox{\hsize=.45\hsize \pex ... \xe}}

22

6.4. Relative versus fixed dimensions

29 ¢ 29 ¢ 29

Tex has two kinds of dimensional units. Dimensions specified in term of “pts”, “inches”, “cm”,
etc. are fixed. Dimensions specified in terms of the units “em” or “ex” are relative to the particular
text font that is current. Historically, an em is the width of a capital M and an ex is the height of
a lowercase x. This is still more or less true, but each font is free to specify the equivalents in
any way that it sees fit. The difference has important implications for parameter setting. A value
specified in terms of em or ex units can be used without change in both the main text and footnotes,
for example. If we set textoffset=1em at the beginning of a document, the proportions will stay
the same whether we used 10pt or 12pt type, or 8 or 9 pt type in footnotes. If the document is
set in 12pt type, and lem is specified to be 12pt in that main text font, it makes no difference for
typesetting in the main text font whether we set textoffset=1em or textoffset=12pt. But it
does make a difference in sections of the document where a font with a different em dimension is
used. If we switch to a font with a 10pt em unit, then the first specification will give a physical
offset of 10pt, but the second will give a physical offset of 12pt.

When a dimension or skip parameter is reset by incrementing the old value, the new value is
specified as a fixed dimension, which will not scale with font changes. The same is true of setting
lengths indirectly by setting 1abelwidth or exnowidth. Adjusting a parameter by incrementing
the old value, or using samplelabel or exnowidth to set the width of the label slot or the
effective width of the example number, should only be used to make local adjustments, not at a
level which has font size changes in its scope. For this reason, expex.tex specifies the label width
in the label type alpha by labelwidth=.72em, not by samplelabel=a..* Setting labelwidth
via the second method would only be satisfactory if the font in force at the points that \pex is used
is the same as the font in force when expex.tex is input and the alpha style defined.

6.5. User designed labeling

Macro: \definelabeltype
Counter: \pexcnt

Parameters:
key value initial value
labelgen char, number, romannumber, or 1ist char
pexcnt integer 97
labellist comma separated list {}

If 1abeltype is set to alpha, the counter \pexcnt is set to 97, the character code of lowercase
a in standard roman font sets, and 1labelgen is set to char. The successive labels are generated
by taking the character corresponding to \pexcnt and stepping the counter by 1. This relies on
the fact that the alphabetical sequence of characters corresponds to the numerical order of the
character codes of the characters. Setting 1labeltype to caps is almost the same, except that
\pexcnt is initialized to 65, the character code of uppercase A. If 1abeltype is set to numeric,

4. In the font that I happen to be using to write this section, the alphabetical labels (including the period) a—d have
widths varying from .694em to .75em; the capital labels A-D have widths varying from .917em to .972em; and the
integer labels for 1 to 9 all have width .75em. The label width settings for the label types alpha (.72em) and caps
(.94em) are good compromises.

23

labelgen is set to number and \pexcnt is initialized to 1. The labels are generated by taking
the number corresponding to the value of \pexcnt. If labeltype is set to roman, \pexcnt is
initialized to 1 and labelgen is set to romannumber. All of these predefined label types also set
the label format, alignment, and width appropriately. See expex.tex for examples of the use of
\definelabeltype.

Something like the following might be useful. In the format I am using, \mit selects a math
italics font which has the lowercase greek letters starting with the position 11.

\pex[labelgen=char,pexcnt=11,
everylabel=\mit]
\a B.
- ’
a
\a 0

(38) «a.

\xe

This scheme has a quirk if labels above ¢ are needed because the correspondence between
numerical order and alphabetical order breaks down at this point. o will be missing, with 7
following &.

This labeling scheme can be defined by:

\definelabeltype{greekmath}{labelgen=char,pexcnt=11,everylabel=\mit,
labelformat=A.}

Then \pex[labeltype=greekmath] is sufficient to invoke this labeling style.

If a sequence of character labels is needed which does not appear in sequence in a font,
it is necessary to generate the labels from a list. Documents in Greek, for example, face the
following problem. Roman letters were largely borrowed from the Greek alphabet, but Greek
alphabetical order was not. Common greek fonts place letters in the position of the borrowing, not
in their natural order in the Greek alphabet. Documents written in Greek, therefore, will have to
generate the labels in multipart examples from a list. The solution is to set 1abelgen to 1ist, and
labellist to the desired list of labels.

For example, suppose the label type greek is defined by

\definelabeltype{greek}{labelgen=1ist,
labellist={a,b,9,d,e,z,h,j,i,k,1,m,n,x,0,p,r,sv,t,u,f,q,y,w}t}

and that \gr selects one of the grmn series of fonts in the cb family of Greek fonts.

\gr

\pex[labeltype=greek] (39) o abgdez

\a {\rm a,b,g,d,e,z} B. ofy,0,e,
\a aibsgsdsesz Y a,b,C,d,e,f

\a {\rm a,b,c,d,e, f} 5 5

\a a,b,c,d,e,f . a?ﬁaqa 7€7CP
\a {\rm A,B,G,D,E,Z} e. AB,GDEZ
\a A,B,G,D,E,Z . ABI'AEZ
\xe

24

“sv” appears in the list rather than “v” so that a nonfinal sigma is produced rather than a final

(1)

sigma. They differ. “v” produces what amounts to a vertical strut of zero width, making the sigma
nonfinal, but contributing no visible material. (Thanks to Christos Vlachos for this idea.)
Of course, if the entire document is written in Greek, then

\lingset{labeltype=greek}

should have global scope, so that parameter setting is not necessary in each \pex construction.

6.6. The parameter sampleexno

Parameter:
key value initial value
sampleexno token list {3}

In some publications, if two examples are close together in the running text and the widths of
the typeset example numbers are different, the offsets are modified so that the texts in the two
examples are aligned. The following is considered, under this stringent aesthetic, to be less than
ideal.

(9) a. Iconsider firemen available. (generic only)

b. I consider firemen intelligent. (generic only)

Exceptional case marking (ECM) verbs seem more or less to allow both existential and generic
interpretations of complement subjects:

(10) a. Ibelieve firemen to be available. (both generic and existential)

b. Ibelieve violists to be intelligent. (generic only)

ExPex provides the parameter sampleexno to handle this formatting problem. If the
parameter is set to the empty token list, it has no effect of the formatting. If it is set to a nonempty
token list, that token list is put in an hbox and its width is taken to be the effective typeset width of
the example number.

(9) a. Iconsider firemen available. (generic only)

b. I consider firemen intelligent. (generic only)

Exceptional case marking (ECM) verbs seem more or less to allow both existential and generic
interpretations of complement subjects:

(10) a. Ibelieve firemen to be available. (both generic and existential)

b. I believe violists to be intelligent. (generic only)

25

\pex[sampleexno=(10)]

\a I consider firemen available. (generic only)

\a I consider firemen intelligent. (generic only)

\xe

Exceptional case marking (ECM) verbs seem more or less to allow both
existential and generic interpretations of complement subjects:

\pex

\a I believe firemen to be available. (both generic and existential)
\a I believe violists to be intelligent. (generic only)

\xe

This kind of fine tuning should only be done at the immediately pre-publication point because
it depends upon the final assignment of example numbers and an aesthetic judgement of when two
multipart examples are “visually close” in the finished product.

It seems to be common for publishers to do fine tuning of this sort in footnotes. There are
two reasons for this. First, lowercase roman numerals are commonly used and their widths vary
noticeably. Second, only a few examples are involved, assuming that examples numbers in a
footnote start at (1), so the final assignments of example numbers is relatively easy to determine.
The role of sampleexno in footnotes is taken up in Section 6.8.

6.7. IJAL style format of multiline examples

Macro: \actualexno

Parameters:
key value initial value default value
avoidnumlabelclash boolean false true
appendtopexarg token list {1

The formatting demands of the International Journal of American Linguistics (IJAL) require some
additional parametrization. Multipart examples look like this:

(4a) first
(4b) second

(64) Preamble
(64a) first
(64b) second

26

(1025) Preamble
(1025a) first
(1025b) second

A first approximation is

\lingset{labelanchor=numleft,labeloffset=0pt,
textanchor=normal,textoffset=1.8em,
preambleanchor=text,preambleoffset=0pt,
labelformat=(A),everylabel=\actualexno}

\actualexno expands to the numerical value in \excnt, provided no special example number is
set by exno, otherwise to the special example number. But the results (below) have some major
problems.

(5%) first
(5b) second

(65) Preamble
(65a) first
(65b) second

(102) Preamble
(102afirst
(102byecond

There are two things that need to be done. First, in order to avoid printing both the example
number and the label of the first part in examples with no preamble, as is the case in (5), printing
the example number must be suppressed if there is no preamble. Second, in order to avoid the
shrinking gap between the label and the text as more digits appear in the example number and it
gets wider, the label width must be made dependent on the example number.

ExPex provides the boolean parameter avoidnumlabelclash which, if set to true,
suppresses printing the example number in \pex constructions if there is no preamble. It has the
XKV default value true, so that it can be set by giving the key with no label. Although it has the
default value true, it has the initial value false. So, with the parameters set as above, we get:

\pex[exno=5,avoidnumlabelclash]

\a first (Sa) first
\a second (5b) second
\xe

In order to solve the problem of the shrinking gap between the label and text, we could
try something like samplelabel=(\actualexno a). But it is considerably less than elegant
to have to write this in every \pex example. It will not produce the desired result to put
\lingset{samplelabel=(\actualexno a)} at the beginning of the document. labelwidth
will be set to whatever the current width of (\actualexno a) is, which is not likely to be what
you want for the entire document even if \actualexno happens to be defined at the point that

27

the \1ingset is executed. To circumvent the global/local problem, ExPex provides the parameter
appendtopexarg. Its value (unexpanded) is appended to whatever other arguments are given to
\pex and evaluated locally.

\lingset{appendtopexarg={samplelabel=(\actualexno a)}}

accomplishes what we want.
We can summarize the discussion by defining the IJAL style.

\definelingstyle{IJAL}{labelwidth=2em,labelanchor=numleft,
labeloffset=0pt,labelformat=(CA),everylabel=\actualexno,
textanchor=normal,textoffset=1em,preambleanchor=text,
preambleoffset=0pt,avoidnumlabelclash,
appendtopexarg={samplelabel=(\actualexno a)}}

Then
\lingset{lingstyle=IJAL} 5 f
\pex[exno=5] (5a) first
\a first (5b) second
d
siesecon (65) Preamble
(65a) first
\pex~ [exno=65] (65b) second
Preamble
\a first (1026) Preamble
\a second (1026a) first
\xe
(1026b) second

\pex~ [exno=1026]
Preamble

\a first

\a second

\xe

6.8. Footnotes and endnotes

Macro: \keepexcntlocal

Footnotes and endnotes pose a somewhat thorny problem since many different Tex and LaTex
macros are used to typeset footnotes and endnotes. Further, there are different ways of assigning
example numbers and labels in multipart examples in footnotes. The footnote referenced at the
end of this sentence is representative. > It is an abbreviated version of footnote 17 in Chapter 2 of
Diesing’s Indefinites, MIT Press. This footnote style is fairly common.

The ExPex distribution contains two files, eptexfn.tex and epltxfn.sty which may be helpful
in producing footnotes in this style. They do two things. First, they each define a macro

5. The existential reading does not seem to be available for subjects of small clause complements of consider:

28

(\everyfootnote) which, if evaluated at the start of processing a footnote, ensures that examples
are correctly formatted. Second, they each perform surgery on a standard \ footnote macro so
that (among other things) \everyfootnote is inserted in the appropriate place.

I intend these macro files both to be used directly or to serve as models for the creation of
variations which satisfy user needs. To the latter end, I will go through epltxfn.sty and explain how
it works. The file listing is:

1 \makeatletter

2 \def\everyfootnote{%

3 \keepexcntlocal

4 \excnt=1

5 \lingset{exskip=1ex,exnotype=roman, sampleexno=,
6 labeltype=alpha,labelanchor=numright,labeloffset=.6emn,
7 textoffset=.6em}

8 1}

9 \renewcommand{\@nakefntext}[1]{%

10 \everyfootnote

11 \parindent=1em

12 \noindent

13 \@thefnmark.\enspace #1%

14 }

15 \resetatcatcode

Lines 2—-8 define the macro \everyfootnote which will be inserted into the footnote macro.
It first ensures that changes in excnt that are made in the footnote are kept local to the footnote.
\keepexcntlocal is an ExPex macro whose execution causes changes in \exnt to be kept local
to the group in which \keepexntlocalo is executed. Without \keepexcntlocal, changes in
excnt inside a footnote would be visible outside the footnote group in which the changes occur.
excnt is then initialized. Finally, parameters are set which control the formatting of examples
in the footnote. The LaTex \footnote command uses \@makefntext to typeset the footnote.
It is defined in the cls file which is used. The redefinition in lines 9-14 is a modification of the
\@makefntext macro defined in article.cls. It first executes \everyfootnote, then prints the
footnote number flush left at full footnote size, not as a superscript.

Assuming that \usepackage{epltxfn} has been executed, the following code produces
fn. 5.

(i) a. Iconsider firemen available. (generic only)

b. I consider firemen intelligent. (generic only)

Exceptional case marking (ECM) verbs seem more or less to allow both existential and generic interpretations of
complement subjects:

(i) a. Ibelieve firemen to be available. (both generic and existential)

b. I believe violists to be intelligent. (generic only)

29

\footnote{%

\lingset{sampleexno=(ii)}

The existential reading does not seem to be available for subjects of
small clause complements of {\it consider\/}:

\pex

\a I consider firemen available. (generic only)

\a I consider firemen intelligent. (generic only)

\xe

Exceptional case marking (ECM) verbs seem more or less to allow both
existential and generic interpretations of complement subjects:

\pex

\a I believe firemen to be available. (both generic and existential)
\a I believe violists to be intelligent. (generic only)

\xe

}

The code in eptexfn.tex is somewhat more complicated because Plain Tex does not number
footnotes and uses the same font for running text and footnotes. \everyfootnote is identical.
If it is compared with the footnote macros in the TexBook (p. 363), on which it is modeled, it is
easy to see the significance of the various modifications.

I anticipate that although the footnote macros in epltxfn.sty and eptexfn.tex will be useful
to some readers without modification, other users will need to modify them for one reason or the
other. Endnotes, in particular, will require work. I hope that these two files will serve as useful
models. Of course, trivial modifications of the various dimensions can be done easily. More
extensive modification require appropriate levels of expertise. Users should feel free to write to
me directly (j.frampton @neu.edu) or post questions to the Ling-Tex discussion group, or to send
me modifications that might prove useful to others. A file epltx-endnotes.sty, for example, would
be useful.

7. User defined styles

Macro: \definelingstyle

Parameters:
key value initial value
everyext token list {}
Everyext token list {}

lingstyle list of key settings (see below) {}

Aside from all the ExPex parameters introduced to this point, there are numerous Tex parameters
that affect the appearance of examples: line spacing, hsize, font selection, etc. These are all

quantities that Tex itself provides mechanisms for setting to suit the user. You may want to make
adjustments of these parameters every time a particular kind of example is typeset, so that special
settings hold inside these examples independently of the contextual settings. For example, suppose
you have many examples that, for some reason, you want to format like (40), with a narrow width,

30

italic font, an oversized gap between the example number and the text, and a somewhat greater
than normal separation between baselines.

40) Und hier konnen wir sehen was
fiir Unfug wird gemacht wenn er
einen ganz langen Satz binnen
kriegt.

One way to do this is:

\ex[textoffset=3em]

\hsize=3in \rightskip=0pt plus 2em \it \advance\baselineskip by 2pt
Und hier k\"onnen wir sehen was f\"ur Unfug wird gemacht

wenn er einen ganz langen Satz binnen kriegt.

\xe

Some rightskip is included because with such a narrow width it is otherwise difficult to avoid
overfull lines.

If you have many examples that you want to typeset in this way that are scattered throughout
a document, it is awkward to have to remember all of these settings and enter them each time an
example of this kind needs to be formatted. Furthermore, if you change your mind about some
detail of this special formatting, you need to go through the document and change each instance
of this formatting. ExPex allows you to package all the formatting changes into one named unit,
called a “style”. If this style is called “narrow italic”, then you can write the following to achieve
the format of (40).

\ex[lingstyle=narrow italic]
The various format specifications are packaged into a style by saying:

\definelingstyle{narrow italic}{textoffset=3em,
everyex={\hsize=3in \rightskip=0pt plus 2em
\it \advance\baselineskip by 2pt}}

Thereafter, setting the parameter 1ingstyle to narrow italic has the effect of setting all the

parameters as specified in the style definition (the two parameters textoffset and everyex in

this example). The parameter everyex works in the following way. If everyex is set to value, a
macro \lingeveryex is defined whose expansion is value. When an \ex or \pex construction is
initiated, after any parameter settings take effect, \1ingeveryex is executed.

ExPex provides a second parameter, Everyex, which is similar to expex. If Expex is set
to value, a macro 1ling@Everypex is defined. When an \ex or \pex construction is initiated,
before after any local parameter changes take effect, \1ingEveryex is executed. The reasons for
providing both everyex and Everyex are subtle. Different stages of the writing/rewriting/editing
process may call for different treatments of example formatting, particularly if the final aim is a
camera ready product. Suppose you normally make double spaced drafts with an hsize of 6.5in
and that your final aim is to produce camera ready copy with an hsize of 4.375in. Suppose also
that you are at editing stage where you want to see exactly how the examples will be formatted in

31

the finished product, but still want full width double spaced text. One way to accomplish this is to
say

\lingset{everyex={\hsize=4.375in \normalbaselines}}

at the beginning of your document. \normalbaselines is a standard Tex macro which establishes
the normal line spacing for the current font. This makes the hsize and line spacing inside examples
independent of the hsize and line spacing you select for the text (outside examples).

This will accomplish what you want. But it makes the further use of everyex in your
document awkward. If you want a particular example to be set in italics, for example, you might
think to use:

\ex[everyex=\it]

This will certainly produce an italicized example because \it will be evaluated early on in
typesetting the example. But it has the unfortunate consequence of overwriting the initial setting
of everyex, removing the special line spacing within examples.

Everyex is provided to accommodate situations like this. The intention is that special settings
that should hold inside examples throughout the document are assigned to Everyex, with expex
reserved for local variations. Since \lingEveryex is evaluated before local parameter changes
take effect, parameter settings specified by Expex will be overridden by any local parameter
settings.

8. Judgment marks

Macros: \judge, \1judge

Parameter:
key value initial value default value
sample judgment string

e
w

In examples without parts, not much needs to be said.

\ex *Jack and Jill wented up the hill.\xe

(41) *Jack and Jill wented up the hill.

In my view (42), with a little whitespace inserted between the asterisk and the example
sentence, looks somewhat better than (41), but the difference is slight.

\ex \judge* Jack and Jill is going up the hill.\xe

(42) *Jack and Jill wented up the hill.

ExPex provides the macro \ judge to accomplish this. \ judge takes one argument. A multi-
character judgment diacritic therefore needs to be surrounded in braces. \judge also ignores

32

following spaces. So \judge{??}Mary... and \judge{??} Mary... produce the same thing, as
do \judge*Mary... and \ judge* Mary...

Multipart examples are more complex, if alignment is to be maintained. If you find (43)
satisfactory, what follows will not be of much interest. But it you would like the text (not including
the judgment marks) to be aligned, read on.

(43) a. There is a pair of pants on the floor.
b. ?*There are a pair of pants on the floor.

c. *There is the pair of pants on the floor.

ExPex provides the macro \1judge which pushes the judgment diacritics into the gap
between the labels and the examples, instead of pushing the examples to the right to make room
for the judgment diacritics. So

\pex

\a There is a pair of pants on the floor.

\a \ljudge{?*}There are a pair of pants on the floor.
\a \ljudge*There is the pair of pants on the floor.
\xe

produces

(44) a. There is a pair of pants on the floor.
b?*There are a pair of pants on the floor.

c. *There 1s the pair of pants on the floor.

Unfortunately, depending on the setting of textoffset, there is unlikely to be sufficient room for
judgment diacritics in between the labels and the examples. textoffset needs to be increased to
make room.

ExPex provides the pseudo parameter to facilitate adjusting the text offset. The key name
is *, which is succinct, but perhaps overly so. In the setting below, the * on the left side is the
parameter and * on the right side is a sample judgment mark. The setting below increments the
text offset by the width of “7*’.

\pex[*=7%]

\a There is a pair of pants on the floor.

\a \ljudge{?*}There are a pair of pants on the floor.
\a \ljudge*There is the pair of pants on the floor.
\xe

(45) a. There is a pair of pants on the floor.
b. ?*There are a pair of pants on the floor.

c. *There is the pair of pants on the floor.

33

textoffset is increased by the width of the judgment diacritic which is furnished as the value of
the parameter *.

If you say \1lingset{*}, with no value assigned to *, it is given a default value, which
happens to be *. So \lingset{*} is equivalent to \1lingset{*=*}. So, for example:

\pex[*]

\a There is a pair of pants on the floor.

\a \ljudge* There are a pair of pants on the floor.
\a \ljudge* There is the pair of pants on the floor.
\xe

(46) a. There is a pair of pants on the floor.
b. *There are a pair of pants on the floor.

c. *There is the pair of pants on the floor.

If you think that the text offset in (45) is too large, textoffset can be further adjusted
directly, so you could write

\pex[*=?%,textoffset=!-.3em]

\a There is a pair of pants on the floor.

\a \ljudge{?*} There are a pair of pants on the floor.
\a \ljudge* There is the pair of pants on the floor.
\xe

(47) a. There is a pair of pants on the floor.
b. 7*There are a pair of pants on the floor.

c. *There is the pair of pants on the floor.

9. Glosses

Macros: \begingl[], \glpreamble[], \gla[], \glb[], \glc[]1,\glft[], \endgl

Before introducing the many parameters which control the visual characteristics of glosses (fonts,
line spacing, etc.), we first consider some simple glosses. They are coded in a traditional coding
syntax; another syntax for coding glosses will be discussed later.

(100) k- wapm -a -s’i -m -wapunin -uk
CL V AGR NEG AGR TNS AGR
2 see 3acc 2pL preterit 3pL

‘you (pl) didn’t see them’

34

\ex

\begingl

\gla k- wapm -a -s’i -m -wapunin -uk //

\glb CL V AGR NEG AGR TNS AGR //

\glb 2 see {\sc 3acc} {} {\sc 2pl} preterit {\sc 3pl} //
\glft ‘you (pl) didn’t see them’//

\endgl

\xe

(101) Mary ist sicher, dass es den Hans nicht storen wiirde seiner Freundin ihr Herz auszuschiitten.

Mary; ist sicher, dass es den Hans nicht storen wiirde seiner Freundin ihr;
Mary is sure that it the-acc Hans not annoy would his-par girlfriend-par her-acc
Herz auszuschiitten.
heart-acc out to throw

‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.’

\ex \begingl

\glpreamble Mary ist sicher, dass es den Hans nicht st\"oren w\"urde
seiner Freundin ihr Herz auszusch\"utten.//

\gla Mary$_i$ ist sicher, dass es den Hans nicht st\"oren w\"urde
seiner Freundin ihr$_i$ Herz auszusch\"utten.//

\glb Mary is sure that it the-{\sc acc} Hans not annoy would
his-{\sc dat} girlfriend-{\sc dat} her-{\sc acc}

heart-{\sc acc} {out to throw}//

\glft ‘Mary is sure that it would not annoy John to reveal her
heart to his girlfriend.’//

\endgl \xe

All line wrapping is automatic. If the hsize were 4in, for example, the code above would
produce (102).

(102) Mary ist sicher, dass es den Hans nicht storen wiirde
seiner Freundin ihr Herz auszuschiitten.

Mary; ist sicher, dass es den Hans nicht storen
Mary is sure that it the-acc Hans not annoy
wiirde seiner Freundin ihr; Herz
would his-par girlfriend-par her-acc heart-acc
auszuschiitten.
out to throw

‘Mary is sure that it would not annoy John to reveal
her heart to his girlfriend.’

35

Glosses (\begingl ... \endgl) have up to three parts, all of which are optional. They are
illustrated below.

(103) Mary ist sicher, dass es den Hans nicht storen wiirde ceamble
seiner Freundin ihr Herz auszuschiitten. p

Mary; ist sicher, dass es den Hans nicht storen)

Mary is sure that it the-acc Hans not annoy
wiirde seiner Freundin ihr; Herz >interlinear loss
would his-par girlfriend-par her-acc heart-acc &

auszuschiitten.
out to throw

S
‘Mary is sure that it would not annoy John to reveal)
il) free translation
her heart to his girlfriend.

The code for the interlinear gloss consists of a sequence of lines of the form

\gllevelname ... //

where levelname is a, b, or c.% There must be one and only one \gla line, which must come first
in the interlinear gloss. \glb and \glc lines can come in any order and can be repeated arbitrarily.

The material delineated by \gllevelname and //, \glpreamble and //, or glft and // is
parsed as a sequence of space separated items. The parser only looks for spaces at the top-level.
Consequently, in (102), for example, it is not sensitive to the space in items like the-{\sc acc}
since the space is inside a group, therefore not at the top level. Spaces that directly precede
terminating // are disregarded. If a line in the interlinear gloss has more items on it than the gla
line, the excess items are discarded. If it has fewer items than the gla line, it acts as if it ended with
empty {} items.

9.1. Parameters

It is easiest to understand what the parameters do by examining how a gloss display is constructed.
Consider (104), for example, in which box outlines have been added to facilitate discussion.

(104) Mary ist sicher, dass es den Hans nicht storen wiirde seiner Freundin ihr Herz auszuschiitten.

Mary;| list) |sicher| |dass |es| den Hans| nichf |storen wiirde| |seiner
Mary| fis| |sure that| fit| fthe-acc [Hans| [not annoy| |[would |his-paT]
Freundin ihr; Herz auszuschiitten.

eirlfriend-pat |her-acq heart-acc, |out to throw

‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.’

1. The preamble is typeset as ordinary running text.

6. This will be extended later to allow the user to define new level names.

36

2. All of the items in the various lines in the interlinear gloss are accumulated, then the boxes
which make up the interlinear gloss are typeset. These vboxes, outlined in (104), will be
called glwords. A strut is inserted on each line of each glword.” As these boxes are generated,
they are fed to Tex’s standard paragraph building machinery, with the interword space set to
Val(glspace).

3. Finally, the free translation is typeset as ordinary running text.

Before giving a systematic list of gloss parameters, an example will help clarify how the
parameter system operates. Suppose the first line for the code to (100) is replaced by:

\ex[glspace=!1lem,everygla={}, everyglb=\footnotesize,aboveglbskip=-.2ex]

the display below is produced. Compared to (100), the space between glwords has been increased
by 1em, the gla-line is not longer italicized, the glb-line is set in a smaller font, and it is moved
closer to the gla-line.

(105) k- wapm -a -8’1 -m -wapunin -uk
CL V AGR NEG AGR TNS AGR
2 see 3acc 2pL preterit 3pL

‘you (pl) didn’t see them’

The parameters everygla and everyglb are what are called ‘hooks’ into the coding of the
gloss. The value assigned to each of these parameters is stored as a list of tokens, and these tokens
are inserted into the code at the appropriate place. The tokens Val(everygla) are inserted at the
start of each gla-line in every glword and the tokens Val(everyglb) are inserted at the start of
each glb-line in every glword. everygla is initially set to \it, so that Val(everygla) is {\it}
initially. There are a number of hooks of this type.

(106) Hooks
initial setting

everygl {}
everyglpreamble {}
everyglilg {}
everygla \it
everyglb {3}
everyglc {}
everyglft {}

The tokens Val(everygl) have scope over the entire gloss, Val(everyglilg) over the interlinear
gloss, etc.

There are a number of parameters like aboveglbskip, which was mentioned above, which
control the vertical spacing. They are all (!)skip parameters. Recall that an (!)parameter can be set
either directly, or as an increment from the present value of the parameter.

7. It is possible to turn off strut insertion inside glwords by setting the boolean parameter glstruts to false. It is
unlikely that you will use this feature, except perhaps for diagnosing a spacing problem. It was introduced as an aid
in designing and building the ExPex glossing machinary. It remains as a public option because it might be useful to
someone at some point.

37

(107) Vertical spacing

initial setting

aboveglbskipT Opt
aboveglcskipt Opt
belowglpreambleskipT lex
aboveglftskipf lex
extraglskipf Opt

Except for extraglskip, the meanings should be clear. Vertical skip Val(extraglskip) is put
between the lines of glwords in the interlinear gloss. The initial setting is .5 ex, but increasing it
sometimes makes the interlinear gloss sigfnificantly more readable.

Finally, there are parameters which control how the glwords are formed into a paragraph.

(108) Horizontal spacing and hanging indentation in the interlinear gloss

initial setting

glspacef (Dskip .Sem plus .4em minus .15em
glrightskip skip Opt plus .1\hsize
glhangindent dimension lem

glhangstyle none, normal, or cascade normal

Val(glspace) is the horizontal skip between glwords and Val(glrightskip) is the right skip.
The initial settings allow considerable stretch and some shrinkage in the space between glwords
and up to 10% of the page width in whitespace at the right margin. This minimizes the chances
of overfull lines and, since interlinear glosses generally have a somewhat ragged appearance, does
not detract from their appearance. In unusual circumstances, narrow page width in particular, this
may require some adjustment to avoid overfull lines. See Section 11.3.1 for further discussion.

The choice parameter glhangstyle specifies the kind of hanging indentation which is used
in the interlinear gloss. The default is normal hanging indentation, as illustrated in (101), but
there is a choice of eliminating hanging identation. There is also the option of cascading hanging
identation See Section 12.4 for an example of cascading hanging indentation.

9.1.1 Where should parameter changes be made?

Consider (105) again. The code can be written as follows, with each parameter setting taking the
narrowest possible scope which achieves the intended effect.

\ex
\begingl[glspace=1.5em]
\gla[everygla=] k- wapm -a -s’i -m -wapunin -uk //
\glb[everyglb=\footnotesize,aboveglbskip=-.2ex]
CL V AGR NEG AGR TNS AGR //
\glb 2 see {\sc 3acc} {} {\sc 2pl} preterit {\sc 3pl} //
\glft ‘you (pl) didn’t see them’//
\endgl
\xe

Narrow scope is conceptually satisfied, but from a coding standpoint it is more convenient to
concentrate the settings in one place.

38

\ex[glspace=1.5em,everygla=,everyglb=\footnotesize,aboveglbskip=-.2ex]
\begingl

\gla k- wapm -a -s’i -m -wapunin -uk //

\glb CL V AGR NEG AGR TNS AGR //

\glc 2 see {\sc 3acc} {} {\sc 2pl} preterit {\sc 3pl} //

\glft ‘you (pl) didn’t see them’//

\endgl

\xe

This way of coding the gloss has the big advantage that it is much easier to see what the parameter
settings are.
If you use multiple instances of the same gloss format, a style should be defined

\definelingstyle{Potawatami}{glspace=1.5em,everygla=,
everyglb=\footnotesize,aboveglbskip=-.2ex}

Then, typesetting a gloss in that style is done simply.

\ex[lingstyle=Potawatami]
\begingl

\xe
If you want a sequence of glosses to all be done in this style, you can say:

\begingroup
\lingset{lingstyle=Potawatami}

\endgroup

9.2. Exceptional \gla items

Items on the \gla line are generally associated with items on the other lines of the interlinear

gloss. There are however a few items, called here exceptional items, which are interpreted in an
exceptional fashion. There are three kinds of exceptional items: the single character + or @, and
any item which begins with the control sequence \nogloss.?

9.21 +

Sometimes it is desirable to override natural wrapping and break up the gloss so that the syntax is
emphasized, as in the following.

8. Version 4 of Expex had two additional exceptional items, the single characters [and]. In version 5, these characters
still operate as in Version 4, but their use is discouraged and their use as exceptional \gla characters will disappear
from ExPex at some point in the future. \nogloss is more general, as explained below.

39

(109) Mary; ist sicher,
Mary is sure

dass es den Hans nicht storen wiirde
that it the-acc Hans not annoy would

seiner Freundin ihr; Herz auszuschiitten.
his-par girlfriend-par her-acc heart-acc out to throw

‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.”

This is accomplished by inserting ‘+’ appropriately, as shown in the code below. When +
is encountered, the line is broken and a new line started. Hanging indentation, either normal or
cascading, is preserved.

\ex

\begingl

\gla Mary$_i$ ist sicher, + dass es den Hans nicht st\"oren w\"urde
+ seiner Freundin ihr$_i$ Herz auszusch\"utten.//

\glb Mary is sure that it the-{\sc acc} Hans not annoy would
his-{\sc dat} girlfriend-{\sc dat} her-{\sc acc} heart-{\sc acc} {out to
throw}//

\glft ‘Mary is sure that it would not annoy John to reveal her
heart to his girlfriend.’//

\endgl

\xe

922 @

Sometimes it is desirable to omit the space between two entries. Below, the space between the
prefix and the verb it inflects has been omitted.

(110) wiye kepi e- ca
two whitemen 1p:3p-found

This is accomplished by inserting ‘@ appropriately, as shown in the code below.

\ex

\begingl

\gla wiye kepi e- @ ca//

\glb two whitemen {\sc 1p:3d}- found//
\endgl

\xe

40

In the unlikely event that you need a gla entry which would normally be entered as @, enter it as
{\relax @} so thatitis not interpreted as a directive to omit a space.9 (111) below shows another
use for the @ diacritic.

9.2.3 \nogloss

Suppose you want to produce a gloss display like the one below.

(111) Fa’nu’i yu’ ni [[O tinaitai-mu t] na lepblu].
show me Obl Op WH[obj].read-agr L book

Note that the brackets are not glossed.
This could be done using the @ gloss diacritic as follows.

\ex[everygla=,glhangstyle=normal]<@period>

\begingl

\gla Fa’nu’i yu’ ni {[[} @ {\it 0} t{\it in\/}aitai-mu
{{\it t\/}]1} na {lepblu].}//

\glb show me Obl {} Op {\it WH\/}[obj].read-agr {} L book//
\endgl

\xe

The gloss alignment is preserved by the use of dummy empty elements in the second row.

If glosses are long and/or if there are many rows, it is tedious and error prone to insert
suitable empty elements.!® \nogloss is intended to simplify constructing glosses in which there
are unglossed items on the \gla line. To produce (111), you can write:

\ex[everygla=,glhangstyle=normal]<@period>

\begingl

\gla Fa’'nu’i yu’ ni \nogloss{[[} @ {\it 0} t{\it in\/}aitai-mu
\nogloss{{\it t\/}]} na {lepblu].}//

\glb show me Obl Op {\it WH\/}[obj].read-agr L book//

\endgl

\xe

If you want extra space between the brackets and the words they bracket, the following is one
way to achieve this.

(112) Um-dsudda’ hdm yan [i taotao [O ni si Juan ilek-fia nu guahu [maligu’
agr-meet we with the person Op Comp the Juan say-agr Obl me agr.want
gui [asuddd’-fia t111].

he WH]obl].meet-agr

9. This is a change. In version 4, {{@}} was suggested. This no longer works because various parsing steps strip
away the grouping. {{{{@}}}} does work, but {\relax @} is more straightforward.
10. Glosses of narratives can have hundreds of elements.

41

\ex[everygla=,glhangstyle=normal]

\begingl

\gla Um-\"asudda’ h\"am yan \nogloss{$[\,$} @ i taotao \nogloss{$[\,$} @
{\it O\/} ni si Juan ilek-\"na nu guahu \nogloss{$[\,$} @ mal\"agu’ gui
\nogloss{$[\,$} @ asudd\"a’-\"na \nogloss{{\it t\/}$\,1111$.}//

\glb agr-meet we with the person Op Comp the Juan say-agr Obl me
agr.want he {\it WH\/}[obl].meet-agr//

\endgl

\xe

The Chamorro examples (111) and (112) are from Chung (1998). The Potawatami example
is from Halle and Marantz (1993). The German example in (101), and (120) in Section (11), are
from Landau (2001). The Kiowa example (110) was contributed by Daniel Harbour.

10. Nlevel glosses; an alternate coding syntax

Macro: \endpreamble
Parameter:
key value initial value
glstyle wrap or nlevel wrap

The last section assumed the default setting, ‘wrap’. The ‘nlevel’ gloss style produces identical
displays, but they are coded differently. Compare the two ways of coding the display (113), which
repeats (100)

(113) k- wapm -a -s’i -m -wapunin -uk
CLV AGR NEG AGR TNS AGR
2 see 3Acc 2pL preterit 3pL

‘you (pl) didn’t see them’

\ex[glstyle=nlevel] \ex[glstyle=wrap]

\begingl \begingl

k-[CL/2] \gla k- wapm -a -s’i -m
wapm[V/see] -wapunin -uk //

-a[AGR/\sc 3acc] \glb CL V AGR NEG AGR TNS AGR //
-s’i[NEG] \glc 2 see {\sc 3acc} {}
-m[AGR/\sc 2pl] {\sc 2pl} preterit {\sc 3pl} //
-wapunin[TNS/preterit] \glft ‘you (pl) didn’t see them’//
-uk[AGR/\sc 3pl] \endgl

\glft ‘you (pl) didn’t see them’ \xe

\endgl

\xe

42

The advantage to this style of coding complex glosses is that the gloss of a word and the word
itself are adjacent in the code, just as they are in the display which is produced; vertically adjacent
in the display, horizontally adjacent in the code. This makes the code much more readable. In
effect, an aspect of WYSIWG is built into the coding. This is particularly useful if the gloss has
many words, the gloss of a narrative for example.

Putting aside consideration of the preamble and the free translation for the moment, the list
between \begingl and \endgl is processed as a space separated list. Only top level spaces are
separators. Spaces inside [...] are effectively hidden from this parsing. So, for example, the
space in -a[AGR/\sc 3acc] does not mislead the parser. The material inside [...] is processed
as a / separated list. Of course, / in this material must be hidden from the parser so / cannot
appear at the top level. The same is true of], for obvious reasons.

The glossed words are written on separate lines above, but this is only for clarity. The code
below is equivalent. It saves on virtual paper, but is not as easily deciphered.

\ex[glstyle=nlevel]\begingl k-[CL/2] wapm[V/see] -a[AGR/\sc 3acc]
-s’i[NEG] -m[AGR/\sc 2pl] -wapunin[TNS/preterit] -uk[AGR/\sc 3pl] \glft
‘you (pl) didn’t see them’\endgl\xe

The preamble and free translation in the wrap style are terminated by //. In the nlevel style,
\endpreamble ends the preamble and \endgl terminates the free translation. There is no special
termination of the free translation. This is illustrated by the coding of (101) in the nlevel style.

\ex[glstyle=nlevel]

\begingl

\glpreamble Mary ist sicher, dass es den Hans nicht st\"oren w\"urde
seiner Freundin ihr Herz auszusch\"utten.\endpreamble
Mary$_i$[Mary]

ist[is]

sicher, [sure]

dass[that]

es[it]

den[the-\sc acc]

Hans[Hans]

nicht[not]

st\"oren[annoy]

w\"urde [would]

seiner[his-\sc dat]

Freundin[girlfriend-\sc dat]

ihr$_i$[her-\sc acc]

Herz[heart-\sc acc]

auszusch\"utten. [out to throw]

\glft ‘Mary is sure that it would not annoy John to reveal her heart to
his girlfriend.’

\endgl

\xe

43

10.1. Parameters which modify particular lines

The various lines in a gloss which is coded in the wrap style are identified by name, so parameters
like everygla and aboveglbskip can be used to modify the named line. everygla modifies
the \gla line and aboveglbskip modifies the \glb line. This method for modifying lines is not
available for coding in the nlevel style because the lines are not numbered. Instead, they must be
referred to positionally.

Parameters:
key value initial value
glneveryline list of token lists {\it?}
glnabovelineskip list of dimensions {}

(114) k- wapm -a -s’i -m -wapunin -uk
CL V AGR NEG AGR TNS AGR
2 see 3acc 2PL PRETERIT 3PL

\ex[glstyle=nlevel,glneveryline={\it,\sc,\sc},
glnabovelineskip={,-2pt}]

\begingl

k-[cl/2]

wapm[v/\rm see]

-alagr/3acc]

-s’i[neg]

-m[agr/\sc 2pl]

-wapunin[tns/preterit]

-uk[agr/3pl]

\endgl

\xe

Note that a list of dimensions {,-2pt} with dimensions missing is acceptable; the missing
dimensions are assumed to be Opt. Missing entries in the value of glneveryline, either because
the list is shorter than the number of lines in the interlinear gloss or because of null entries on the
list, are similarly assumed to be null and cause no problem. The material inside the brackets, or
material delimited by / can be missing as well, but the brackets are mandatory. Spaces after [or
/ are ignored, so for example, wapm[v/\rm see] and wapm[v/ \rm see] produce the same
output.

There is no parameter aboveglaskip for use in the wrap coding style since vertical skip in
the interlinear gloss makes sense only between lines. Similarly, the first item in the list specified
by glnabovelineskip, which corresponds to \aboveglaskip, is ignored.

44

10.2. \nogloss and the diacritics @ and +

A word gloss (word)[{gloss;)/ ...] can optionally be immediately followed by one of @ and +.
A @ cancels the usual space between the typeset word glosses. A + introduces a line break. This
should be compared with the different syntax in the wrap style; see Sections 9.2.2 and 9.2.1. In
the nlevel style they are diacritics; in the wrap style they are exceptional words. For example, the
following code produces the same output as the code which is given for (110).

\ex[glstyle=nlevel]
\begingl wiye[two] kepi[whitemen] e-[\sc 1p:3d-]1@ ca[found] \endgl
\xe

\nogloss in nlevel style glosses works very much the same way that it works in wrap style
glosses.

(115) Fa’nu’i yu’ ni [[O tinaitai-mu t] na lepblu].
show me Obl Op WHJobj].read-agr L book

\ex
\begingl[glstyle=nlevel,glneveryline={}]
Fa’nu’i[show]

yu’ [me]

ni[Obl]

\nogloss{[[\thinspace}@ {\it 0} [Op]
t{\it in\/}aitai-mu[{\it WH\/}{[obj]}.read-agr]
\nogloss{{\it t}\thinspace]}

na[L]

lepblu[book]@ \nogloss{].}

\endgl

\xe 11

10.3. Line spacing inside glwords

One spacing problem that is handled automatically in the wrap style must be handled by the user
in the nlevel style. It is not common, but is worth mentioning beca