Building and flashing the signals app using VScode and Plat-
formIO IDE on an Apple Silicon MAC mini M1

1 Introduction

At the ConTgXt 2025 meeting in Poland the ConTgXt Watch was given to the meeting partic-
ipants. Using colourfull lights, this device gives a visual display of the progress of a ConTgXt
run and is particularly usefull when running a large number of files. The ConTgXt Watch
is based around a ESP32-S3-WROOM-1 which is connected to a computer via a serial port.
More details on the device (otherwise known as a Squid) can be found in the Signals manual
in the ConTgXt distribution.

This document gives instructions on how to build the signals software, in this case on a MAC
mini M1 which uses an ARM cpu, and flash it to the ESP32 using VScode and the PlatformIO
IDE extention pack. In addition you will also require the C/C++ pack, and it makes no
harm to also install the C/C++ Extention Pack,C/C++ Themes,and Clang-Format Tools.
Once all the extention packs are installed we can proceed with the building of the signals
software.

2 Building the signal software

« Unzip the signals.zip file into your Home folder. You will see a directory named codebase
with a number of sub-directories. The sub-directory vscode is the directory where the
build files are stored that are used by PlatformIO.

« Open VScode with a New Window and click on the Home icon in the bottom toolbar to
open the PlatformIO IDE. ThePlatformIO Home will open, then click New Project. The
Project Window will open.

« Give the project a Name, then select Board,  used ESP32-S3-DevKitC-1-N8R2. Then se-
lect Framework: Arduino. Leave Location: checked. Click Finishand the new project
is created.

« Navigate to the codebase>vscode directory. Copy the files in the lib directory to the
PlatformIO>Projects>New Project Name>1lib directory

« Navigate to the codebase>vscode>sxrc directory and copy the file context-1mtx-sig-
nal.cpp to PlatformIO>Projects>New Project Name>src directory and delete the
file main.cpp there.

+ Replace the code in the platformio. ini file of the new project and save it with the fol-
lowing content:

; PlatformIO Project Configuration File



; Build options: build flags, source filter

; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages

; Advanced options: extra scripting

; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html

[env:esp32-s3-devkitc-1]

platform = espressif32

board = esp32-s3-devkitc-1

framework = arduino

board_build.arduino.memory_type = gio_qspi

board_build.flash_mode = qio

board_upload.flash_size = 4MB

board_upload.maximum_size = 4194304

board_build.partitions = default.csv

lib_deps =
stnkl/ESPEssentials@"2.1.5
tzapu/WiFiManager@”~2.0.17
littlefs
fastled/FastLED@"3.10.1

build_flags =
-DARDUINO_USB_MODE=1
-DARDUINO_USB_CDC_ON_BOOT=1
-DSIGNAL_USE_DEVICE=ESP32
-DSIGNAL_USE_BUTTONS=1

We are now ready to perform the build operation. Click on the tick mark in the bottom
toolbar. The build operation will commence and after a few seconds, if everything has
gone to plan, the build will be successful.

After the successful build we can now flash the ESP module by clicking the arrow next
to the build tick. PlatformIO will automatically find the serial port though which it can
upload the code. If it doesn’t, click the auto icon on the bottom tool bar and that will show
you a list of ports and if your serial port is not listed you will have to download a suitable
driver for it. If the flash is successfull take a note of the serial port used as this will be
required for the next step, which is configuring signal.

Navigate to the tex>texmf-context>context>data>signal directory and open the
ctxsignals-template.lua file. Under the line beginning with - -0SX is the line be-



ginning with - -port, replace this with the name of the serial port used to flash the ESP
module, like port = " /dev/serialportname"”.

+ Rename the file to ctxsignals. lua.

3 Testing the module
Testing the module can be done by running a simple file as follows:
% signal=squid

\starttext
\dorecurse $100% 3§
\dorecurse $100% 3

\samplefileiward?
\par
£
\page
§
\stoptext

with the command:
context --script signalsTest --squid --test

A successfull run will have all the lights coloured green

4 Further reading

It goes without saying that the signals manual in the distribution should be your first port
of call. On the internet there are may youtube videos showing applications of the ESP32
module, that are worth viewing for background information on the module.

It is likely that the the procedure described is similar on other platforms where PlatformIO
is available. The USB set up is of course different then.

Keith McKay, 2025



